Search results for "Bone Tissue Engineering"

showing 10 items of 16 documents

Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering

2020

As a milestone in soft and hard tissue engineering, a precise control over the micropatterns of scaffolds has lightened new opportunities for the recapitulation of native body organs through three dimentional (3D) bioprinting approaches. Well-printable bioinks are prerequisites for the bioprinting of tissues/organs where hydrogels play a critical role. Despite the outstanding developments in 3D engineered microstructures, current printer devices suffer from the risk of exposing loaded living agents to mechanical (nozzle-based) and thermal (nozzle-free) stresses. Thus, tuning the rheological, physical, and mechanical properties of hydrogels is a promising solution to address these issues. Th…

0106 biological sciences3D bioprintingMaterials scienceTissue EngineeringTissue Scaffolds010401 analytical chemistryBioprintingHydrogelsNanotechnologyGeneral MedicineHard tissue01 natural sciencesApplied Microbiology and BiotechnologyCartilage tissue engineeringBone tissue engineering0104 chemical scienceslaw.inventionCartilageBody organslaw010608 biotechnologyPrinting Three-DimensionalSelf-healing hydrogelsMolecular MedicineCellular MorphologyBiotechnology Journal
researchProduct

Combination of silica nanoparticles with hydroxyapatite reinforces poly (l-lactide acid) scaffolds without loss of bioactivity

2013

Composite scaffolds of poly(l-lactide acid) and hydroxyapatite are of great interest in bone tissue engineering, but their mechanical properties are typically inferior to scaffolds of pure poly(l-lactide acid) due to agglomeration of the particles and weak interfacial component interaction. Fabrication strategies like double sonication of hydroxyapatite or increasing the amount of this inorganic filler do not effectively enhance the mechanical performance. In this study, poly(l-lactide acid) composites combining two types of fillers, mesoporous silica (SiO2) nanoparticles and hydroxyapatite, were developed to reinforce the poly(l-lactide acid) scaffold without any loss of bioactivity. A 5%…

BiomaterialsSilica nanoparticlesMaterials sciencePolymers and PlasticsChemical engineeringPoly-L-lactideComposite numberMaterials ChemistryBioengineeringBone tissue engineeringJournal of Bioactive and Compatible Polymers
researchProduct

Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review

2023

The progress in additive manufacturing has remarkably increased the application of lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes. Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the regeneration of massive bone defects, which require external intervention to be bridged. However, the repair of such critical bone defects remains a challenge. The present review collected the most significant findings in the literature of the last ten years on Ti6Al4V porous scaffolds to provide a comprehensive summa…

Biomaterialstitanium alloylattice structuresscaffoldsBiomedical Engineeringmechanical propertiesbone tissue engineeringadditive manufacturingJournal of Functional Biomaterials
researchProduct

Anisotropic scaffold for Bone Tissue Engineering

2014

Bone Tissue EngineeringSeparazione di fase
researchProduct

STRUCTURAL FEATURES AND MECHANICAL PROPERTIES OF PLLA/PEARL POWDER SCAFFOLDS

2013

In order to improve the mechanical properties of scaffolds for bone tissue engineering, the present study aims to bring calcium carbonate (CaCO3) with signaling molecules, namely pearl powder, into poly(L-lactic acid) (PLLA). PLLA/aragonite and PLLA/vaterite scaffolds were successfully fabricated by the freeze-drying method. Both composite scaffolds had a similar porous structure but a different saturated content of pearl powders. For both scaffolds, the porosity decreases and yield strength increases as pearl powder content increases. Introducing pearl powders into PLLA can improve the mechanical properties of the scaffolds. The porous structure plays a crucial role in the yield strength …

Materials scienceComposite numberBiomedical Engineeringengineering.materialeye diseasesBone tissue engineeringchemistry.chemical_compoundCalcium carbonatechemistryChemical engineeringVateriteengineeringComposite scaffoldPorosityPearlJournal of Mechanics in Medicine and Biology
researchProduct

Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on star…

2009

In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF (vascular endothelial growth factor) in fibrin gel-assays in vitro. Co-culture of OEC with human primary osteoblasts (pOB) on SPCL, induced an angiogenic activation of OEC towards microvessel-like structures achieved without additional supplementation with angiogenic growth factors. Effects of co-cul…

Mice SCID02 engineering and technologyBone tissueBone tissue engineeringNeovascularizationMicechemistry.chemical_compoundSubcutaneous TissueImplants ExperimentalTissue engineeringOsteogenesisEndothelial progenitor cells0303 health sciencesIn vivo testTissue ScaffoldsbiologyStarch021001 nanoscience & nanotechnology3. Good healthCell biologyVascular endothelial growth factorDrug CombinationsPhenotypemedicine.anatomical_structureMechanics of MaterialsProteoglycansCollagenmedicine.symptom0210 nano-technologyPolyestersBiophysicsNeovascularization PhysiologicBioengineeringEndothelial progenitor cellBone and BonesFibrinBiomaterials03 medical and health sciencesIn vivomedicineAnimalsHumansCell Proliferation030304 developmental biologyMatrigelScience & TechnologyOsteoblastsTissue EngineeringVascularizationEndothelial CellsCoculture TechniquesGene Expression RegulationchemistryCeramics and Compositesbiology.proteinLamininBiomedical engineeringBiomaterials
researchProduct

Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells.

2015

Bioactive glasses are known for their ability to induce osteogenic differentiation of stem cells. To elucidate the mechanism of the osteoinductivity in more detail, we studied whether ionic extracts prepared from a commercial glass S53P4 and from three experimental glasses (2-06, 1-06 and 3-06) are alone sufficient to induce osteogenic differentiation of human adipose stem cells. Cells were cultured using basic medium or osteogenic medium as extract basis. Our results indicate that cells stay viable in all the glass extracts for the whole culturing period, 14 days. At 14 days the mineralization in osteogenic medium extracts was excessive compared to the control. Parallel to the increased mi…

MineralizationMaterials scienceBiomedical EngineeringAdipose tissuechemistry.chemical_elementBiocompatible MaterialsCalciumta3111BiochemistryBone tissue engineeringlaw.inventionBiomaterialsExtracellular matrixlawOsteogenic differentiationHumansBioactive glassMolecular Biologyta217Mesenchymal stem cellCell ProliferationIonsStem CellsMesenchymal stem cellta1182Cell DifferentiationGeneral MedicineIn vitroCell biologychemistryAdipose TissueBioactive glassAlkaline phosphataseGlassStem cellBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

The use of hydrogels in bone-tissue engineering

2010

Many different types of scaffold materials have been used for tissue engineering applications, and hydrogels form one group of materials that have been used in a wide variety of applications. Hydrogels are hydrophilic polymer networks and they represent an important class of biomaterials in biotechnology and medicine because many hydrogels exhibit excellent biocompatibility with minimal inflammatory responses and tissue damage. Many studies have demonstrated the use of hydrogels in bone-tissue engineering applications. In this report, the summary was conducted on various kinds of polymers and different modification methods of hydrogels to enhance bone formation. The results revealed that hy…

ScaffoldBiocompatibilityTissue EngineeringTissue ScaffoldsChemistrytechnology industry and agricultureNanotechnologyHydrogelsmacromolecular substances:CIENCIAS MÉDICAS [UNESCO]complex mixturesBone tissue engineeringBone and BonesOtorhinolaryngologyTissue engineeringTissue damageSelf-healing hydrogelsUNESCO::CIENCIAS MÉDICASSurgeryBone formationBone regenerationGeneral Dentistry
researchProduct

The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineeri…

2013

Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fab…

ScaffoldCell signalingOsteoclastsPharmaceutical Sciencebio-polyphosphateReview02 engineering and technologyscaffoldBone morphogenetic protein 2Bone and BonesExtracellular matrix03 medical and health sciencesOsteoprotegerinBiomimetic MaterialsPolyphosphatesBMP-2Drug DiscoveryMorphogenesisAnimalsHumansbone tissue engineeringPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5030304 developmental biologymorphogenetic scaffoldsBiological Products0303 health sciencesOsteoblastsTissue EngineeringTissue Scaffoldsbiologybio-silicaChemistryMesenchymal stem cellRANKLAnatomySilicon Dioxide021001 nanoscience & nanotechnologyCell biologylcsh:Biology (General)RANKLosteoprotegerinbiology.proteinStem cell0210 nano-technologyMarine Drugs
researchProduct

Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering.

2006

The establishment of a functional vasculature is as yet an unrealized milestone in bone reconstruction therapy. For this study, fiber-mesh scaffolds obtained from a blend of starch and poly(caprolactone) (SPCL), that have previously been shown to be an excellent material for the proliferation and differentiation of bone marrow cells and thereby represent great potential as constructs for bone regeneration, were examined for endothelial cell (EC) compatibility. To be successfully applied in vivo, this tissue engineered construct should also be able to support the growth of ECs in order to facilitate vascularization and therefore assure the viability of the construct upon implantation. The ma…

ScaffoldMaterials scienceCellular differentiationEndothelial cellsBiophysicsNeovascularization PhysiologicBioengineering02 engineering and technologyComplex MixturesStarch-based scaffoldsCell junctionBone and BonesBone tissue engineeringBiomaterials03 medical and health sciencesmedicineBone regenerationCells Cultured030304 developmental biology0303 health sciencesScience & TechnologyTissue EngineeringCell adhesion moleculeVascularizationCell DifferentiationStarch021001 nanoscience & nanotechnologyCell biologyEndothelial stem cellmedicine.anatomical_structureMechanics of MaterialsCell cultureCeramics and CompositesBone marrowEndothelium Vascular0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct